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A method of solving certain problems of unsteady plane flows of an ideal fluid 
past a body with separation in terms of analytic series, is proposed. The form 

of expansion of the functions sought is obtained such, that the equations can be 

separated and the coefficients of expansion computed successively, An inverse 

problem is formulated and exact solutions constructed. In the real flows with 

separation the viscosity plays an important part and, as was pointed out in [l], 

no unanimous opinion exists asto whether separation can occur in an ideal fluid. 
The exact solutions corroborate that such a possibility exists. 

The work represents an attempt at further development of analytic methods 
of investigation [2 - 51, 

1. Element8 of the general theory. In an ideal fluid the separation is 
accompanied by formation. of a surface of discontinuity of the tangential velocitycom- 

ponents. The circulation r of the velocity along the contour intersecting this surface 
only at a single point W, is generally different from zero, and in the plane flow with 

separation the surface of tangential discontinuity can be represented by the function 

W (t, I’), 0 < T < To. Here W represents a point on a complex plane, t is time and 
To is the circulation along a contour enclosing the whole discontinuity. Under such 

parametric formulation, the velocity of motion ofthe points of the tangential disconti- 

nuity is equal to half of the sum of the velocities of motion of the fluid particles on both 
sides of the discontinuity. 

By u we denote the complex velocity of a flow past a body without separation. The 
surface of tangential discontinuic: i,lduces, in the presence of the body in question, addi- 

tional complex velocity V . which is discontinuous, and at the points of discontinuity we 

define the mean velocity (V). 

We formulate the problem and solve it using auxiliary complex planes. Let 2 (w) for 
example, be a conformal mapping which transfers the outside of the body onto the right 

half-plane of z. Then we have +r. 
dz 1 

<V> = (0) x, <v> = 2xi 
s 

dT* 
.z-- z* 

-ro 

Here the integration is carried out on the z -plane along the mapping of the surface of 
discontinuity and its reflection in the ordinate axis, T* denotes the variable of integra- 

tion and Z* = z (4 rd. 

If separation takes place only at the sharp edges of the body, then the flows past the 
body with and without separation are in one-to-one correspondence , and the problem is 

reduced to that of determining the bounded complex velocity U + V of the separation 
flow past in the specified complex velocity U without separation. To do this, we must 
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solve the following system with respect to the unknowns w (t, I) and r0 (t) : 

(U + CT’>)* = g . I~+vl<c‘J 
(the upper asterisk denotes a complex conjugate). The above inequality represents a 
generalization of the Joukowski postulate and can be reduced to equations of various 
types. If e.g. the sharp edge of the boundary terminates in a segment of the straight 

line (-e, 0), the postulate can be written in the form 

Im (U + V) = 0, r = To 

The parameter I can conveniently be replaced by the time z elapsed from the ins- 

tant of appearance of the given point of the tangential discontinuity, In this case I’ be- 
comes an unknown quantity depending on the difference t - t. The expression for CL’) 
now becomes +t 

1 
(1’) = 2JIL 

dt, ar, 

z-_z,> 
I’*-I‘(t-IT*]) 

-t 

2, C&88 of a remi-infinite plate. Let us consider a flow past a semi- 
infinite plate t-w, 0) with separation, corresponding to a flow without separation , the 

complex velocity of which is 
U =m 1 + A (f)/(2iW’9 (2. I) 

Here A (t) is an analytic function satisfying the condition A (0) = 0). In this case the 
function z = VW 

plane of z and the 

maps the outside of the half-plate conformally onto the right half- 

problem is reduced to solving the system 

( 
t+ L!$ _I z)* = L$ (2.2) 

(2.3) 

The integration here is also carried out over the discontinuity and its reflection (indica- 

ted in Fig. 1 by a dashed line) z* = z (t, z,). The problem of constructing the field of 

Fig, 1 

flow is reduced to that of solving the system (2.2), (2.3) for the unknowns z (t, z) and 

IO (t). 
Eliminating A (t) from (2.1) and changing the variables according to the formulas 

t = t12,f = rr2andz=r1(i+q),wecanreducethesystem(2.2),(2.3) totheform 

The integration is carried out on the t,, z1 variable plane along the line r = const , 
over the variable ~1 within the interval (0, zr). 

The method of solution can be conveniently explained using a semi-inverse problem 
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in which the total circulation of the separated vortices is given in the form of an ana- 
lytic function M (t) and the quantity A (t) is assumed to be.unknown. 

I‘, (t) = t”rjPf (t) (2.6) 
The solution can be obtained by the iterative process in which the (n +. I)-th iteration 
un+r* is given by the right-hand side of (2.4) in which v is replaced by v,, and tl by 
cm (no = 0) ; v, is given by the right-hand side of the second equation of (2,5), where 
I? is replaced by rc (t,2 - zle2), n by r\,,.and ?I* by rIn*. The iterative process has the 
following property: if the quantity yl,% = Mr (tr2, zr) can also be written in the form of 
a convergent series in increasing powers 01 tcs and tl, then nn+i = Ms (tla, Q) can also be writ- 
ten in the form of a convergent series in powers of tla ,and a,.Ecom this it follows that the 
terms of the series M, are functions of the terms of the series Mi. But the terms of M, 

of order I, i.e. the terms of the form at 12k J t .’ Sk depend only on those terms of Ml the 
order of which is strictly less than j. We therefore conclude that since the first order 
term of Mz is independent of the terms of M,, it,will remain unchanged in all iterations 
beginning from the first iteration. Repeating this reasoning we see that the second order 
terms will also remain unchanged beginning from the second iteration since they depend 
on the first order term only, etc. The n - th order terms will remain unchanged beginning 
from the n-th iteration. It is clear that only these terms are important, 

For example, for I’,, = l/se” we obtain 

Changing to the 2, Y coordinates we can show that the discontinuity on the W-plane 
has the form 

The coordinate z of the discontinuity moves according to the law 

2=i! -&2?...,, 

The form of d~continui~ is analytic near its end, but the distribution of the vocticity 
has the form r = psizM, (t, p) where p is the distance of the pacticulac point of the 
discontinuity from its end, and M4 is an analytic function. We can also determine the 
function A (t). In the case in question we have 

1 
A(t)=+&+.** 

In solving the direct problem, we also bring Eq. (2.4) into the iterative process, It de- 
fines every time the total circulation I: OR of the separated vortices. The circulation can 
be written in the form (2.6) provided that the conditions imposed on the function d(t) in 
(2.1) hold, The iteration which follows is the same as that in the semi-inverse problem, If, 
for example, A (t) = t, then 

r. = -$- tQ+& t”+ .*, 

We note that the iterative process given above is based on the fact that the linearized 
pact is used as the principal term. The process can also be used to determine a flow 
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about a profile with separation, provided that the profile terminates in a straight line 
segment so that the separation-free flow can be expanded near the edge into a series 

with the principal terms (2.1). In this case the outside of the profile maps onto the right 
half-plane of z , so that the point z = 0 corresponds to the edge and the problem redu- 
ces to that already discussed. 

3, Formulrtrlon of the inverrr problemr, Proof of the theorem of exis- 
tence of the discontinuity formation process can be carried out by proving the conver- 
gence of the series ~1 = M, ( t12, z,). This problem is however very complicated, We 

therefore present an indirect method utilizing the inverse problems, which are formula- 

ted as follows. We specify a process of formation of a discontinuity W (t, a), r (t, a), 

where a is a parameter, about the specified body. We require to find a vortex-free flow 
past the body, at which 

(V + <V>) * = awlat (3.1) 

Next we must determine the sources of the given motion which can be generated by, 

for example, moving bodies. 
To solve the inverse problems, we must first find dW/dt and (V), then use Eq. (3.1) 

to find the function at the line of discontinuity and continue, if possible, this function 

analytically onto the complex plane. The inverse problem, just as the straight problem, 

is best solved using an auxiliary plane. For the given conformal mapping W (z), the 
equation of motion assumes the following form on the auxiliary plane: 

(u + (v))* = I w 12 g , u=vwz 

u = vwz, (v> = <v>wz 
and the solution is obtained as before. 

-4 --2 u i 

Fig. 2 

Thus a solution of the inverse problem exists if the analytic continuation described 
above exists. Examining the problem 2 we can prove that the above analytic continua- 
tion always exists provided that the process of formation of the discontinuity is given in 
the form of the following convergent series: 

7J = M, (t,2, z,), ro = tP’.n/T (Q 

Without indulging in a detailed discussion, we give two exact solutions obtained with the 
help of the above statement. 

4. Exact Bolution of thr problam with a dircontinuity formed 
rbout L romi-infinite plate, We define the process of formation of a disconti- 
nuity about a semi- infinite plate (-CO, 0) (see Fig. 2) as follows : 

W (a) = 4 sin2 aeizar, I? (a. t) = V3 (t - 4 tg2 a)“, 0 < a < arctg (l12C2) 
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We define the auxiliary z -plane using the following pair of transformations: 

JQCZ1, 22,=-z 
2 + iz, 

In the z -plane the discontinuity lies on the coordinate x. The resulting conformal trans- 
formation has the form 

JY (z) = (A) 

Writing the equation of motion of the discontinuity on the z -plane, we find 

u = 1 Wz I2 dz/dt - (u> (4.1) 
When z = x , we have 

1 wz 1 2 z 4x* (1 + ‘/4r4)-3, dzldt = ‘/g+ 

qv> = _i (x2 _ l/,t) (u = i (z2 - t)l”Z - i (Z2 - ‘lzt)) 

On substituting the above expressions into (4.1) with z = x , we find u = u (x, t). Obvi- 

ously, for the analytic continuation it is sufficient to replace 2 by z . As the result we 
obtain u = 22 (1 + ‘/4z4)-3 _1- i (22 - ‘/,t) 

The function u + v =:( IL-7 u)/ Wz which yields the solution of the problem, has a singu- 
larity on the upper surface of the plate at the point - 1, and at the lower surface at the 
point -4 (see Fig. ‘2 in which arrows indicate the trajectories of the fluid particles). The 
solution is bounded within the square shown in Fig. 2. 

We find the motion source in the following manner. We follow the movement of the 

fluid particles lying on the square contour (see Fig. 2) at the instant t = 0 , to find the 
law of deformation of this contour. We can now assume that no flow takes place outside 

this contour. The contour itself filled with an ideal fluid is deformed under the action 

of the external forces in accordance with the law determined previously. 

6. Exact rolution of the problem with a dircontinufty formed 
about a plate of finite width. We define the process of formation of a dis- 

continuity about a plate (-2, 0) (see Fig. 3) as follows: 

W (a) = 2 sin2 aeizal(l - sin2 aei2a) 

r (a, t) = v3 (t - 2tg2 a)3’z, 0 < a < arctg (t/2)“% 

The following sequence of mappings defines the auxiliary z -plane and the resulting 

conformal mapping : 2w VT z2 -- 
2 + w - Zl, v/z,- zz, 

JO + izz = ’ 

W (z) = z2/( 1 - i v?Xz - z2) 

As in the previous example, the discontinuity lies at the coordinate x and we have 

1 Wz 12 = (43~~ + 2x4)(x4 + 1)-2, dz / dt = 1/2~-1 

u (z, 1) = (22 + z3)(z4 + 1)-2 + i (z2 - ‘lzt) 

‘I; 
-4 0 

Fig. 3 
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The function U + V providing the solution has a singularity at the point -If4 + 1/4i, 
and at this point we have a vortex of intensity n/2 and a dipole. Arrows in Fig. 3 indi- 
cate the direction of the dipole axis and of the vortex circulation. Another singularity 
exists at the upper surface of the plate at the point - 1 in the form of a dipole of vari- 

able intensity, and a fourth order pole of constant intensity. The velocity at infinity is 

directed at a certain angle to the plate. The circulation about the system plate - dis- 
continuity. is absent. A usual singularity corresponding to the overflow of the fluid is 

present at the tip of the plate (see Fig. 3). 
At the initial instant of time the velocity at infinity, the pole at the plate, the vortex 

and the dipole, induce a flow which has no singularities at the trailing edge. On the 

upper surface of the plate the dipole tends to cause the overflow and singularity at the 
trailing edge. These deviations from the regular character are neutralized by the tan- 

gential discontinuity which is formed. 
The exact solution in the z -plane can be written in the form 

u + u = (22 + 23)(z4 + I)-2 + i (z2 - q’h, 

On the w-plane the solution is much more complicated. 
In both the above cases the discontinuity was assumed to be stationary, with only its 

length subject to change. This enabled us to obtain exact solutions in a very simple 

manner. 
The author thanks A. A. Nikol’skii for formulating the basic problems and for the 

assistance given. 
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